UG Fellowship Educational-Training Program for Indian students, Summer-2018. INSTITUTE OF MECHANICAL ENGINEERING List of Projects

N⁰	Name of project	Description of project	Name of Professor/ mentor	Name of Applicants	Remarks
1.	Stress strain state of biomechanical systems of lower limbs with fixation systems 1	Stress-strain state study of biomechanical systems using CAD / CAE	Ph.D. Viktor Yeshchenko		Students after the third year of study
2.	Stress strain state of biomechanical systems of lower limbs with fixation systems 2	Stress-strain state study of biomechanical systems using CAD / CAE	Ph.D. Viktor Yeshchenko		Students after the third year of study
3.	Definition stiffness of biomechanical systems 1	Experimental study of biomechanical systems	Ph.D. Viktor Yeshchenko		Students after the third year of study
4.	Definition stiffness of biomechanical systems 2	Experimental study of biomechanical systems	Ph.D. Viktor Yeshchenko		Students after the third year of study
5.	Laser cladding techniques using High Power Diode Lasers	Numerical simulation and Experimental study of laser systems	DSc, Prof. L.Golovko Assistent: - R.Djuk		Students after the third year of study

6.	Peculiarities of coaxial laser cladding	Numerical simulation and Experimental study of laser systems	DSc, Prof. L.Golovko Assistent: - R.Djuk	Students after the third year of study
7.	Parts restoration on-site using laser cladding	Numerical simulation and Experimental study of laser systems	DSc, Prof. L.Golovko Assistent: - R.Djuk	Students after the third year of study
8.	Mobile platforms for laser cladding technological properties	Numerical simulation and Experimental study of laser systems	DSc, Prof. L.Golovko Assistent: - R.Djuk	Students after the third year of study
9.	DEVELOPMENT OF AUTOMATIC SYSTEM OF HYDROFICATED DRILLING MACHINE	Hydraulic circuit and PLC control programs of hydroficated drilling machine must be developed.	Ass.Prof., PhD O.Levchenko	Students after the third year of study
10.	DEVELOPMENT OF AUTOMATIC SYSTEM OF PNEUMATIC PRESS	Pneumatic circuit and PLC control programs of pneumatic press must be developed.	Ass.Prof., PhD O.Levchenko o	Students after the third year of study
11.	Development of technological process for CNC machine	Students develop a technological process. What includes the choice of instrument, tooling, calculating cutting modes and writing a control program for CNC machine. And also the implementation of the developed project on CNC machines HAAS	DSc, Prof. Y.Petrakov Assistant D. Shupletsov	Students after the third year of study

12.	FeatureCAM –PowerMill	Dynamic machine control, Improved stock simulation, Enhanced turning abilities	Ass. Prof., PhD J. Bessarabets	Students after the third year of study
13.	Structural Analysis of Aircraft Components	CAD/CAM/CAE Informational techniques for aviation and engineering structures in the engineering analysis systems	Ass. Prof., PhD, M. Gladskyi,	Students after the third year of study
14.	Process Planning Using Methodologies of Value Analysis for Aircraft Structures	CAD/CAM/CAE Informational techniques for aviation and engineering structures in the engineering analysis systems	Ass. Prof., PhD, M. Gladskyi,	Students after the third year of study

Prof., DSc, Oleksandr V. Shevchenko Deputy Director Institute of Mechanical Engineering <u>o.shevchenko@kpi.ua</u>

Signature _____

VISHWANIKETAN

Signature _____

UG Fellowship Educational-Training Program for Indian students, Summer-2018. FACULTY OF HEAT POWER ENGINEERING Nano satellite department List of Projects

N⁰	Name of project	Description of project	Name of	Name of	Remarks
			Professor/mentor	Applicants	
1.	Satellite communi-	1.Analysis:	PhD Rassamakin		
	cation control center	• Ground station requirements;	Boris]
	and mission control	• Place and conditions;			
	center	Communications Schema development;			
		• Approve concept.			
		2. Frequency allocation and licensing:			
		 Ground Control station licensing; 			
		• IARU frequency allocation application;			
		• ITU notification application;			
		• Build ground segment infrastructure for satellite communication;			
		• Develop and test onboard and ground telecommunication software,			
		implement telecommunication protocols.			
		3.Testing.			
		4.Trainings.			
		5.Mission Operations.			
2.	Designing the	1. The main factors affecting the thermal regime of the satellite. Choice	PhD Rassamakin		
	subsystem of	of the type of the thermal control subsystem.	Boris		
	thermoregulation	2. Stages of designing of a subsystem of thermoregulation.			
		3. Mathematical model of the thermal regime of the satellite:			
		3.1. Geometric model and external heat fluxes.			
		4. Thermovacuum tests of the satellite.			
3.	Modeling of the	The project includes: thermal analysis of the design of a nanosatellite	PhD Rassamakin		
	thermal regime of a	(NC) with the use of cellular panel heat shields, and thermo-regulation	Boris		
	nanosatellite in the	coatings in order to passively provide optimal thermal mode of operation]]
	solar-synchronous	of satellite equipment. Each component of a nanosatellite works in			
	orbit of the Earth	accordance with its permissible range of temperatures, therefore, it is			
		advisable to carry out a numerical and experimental study nanosatellite			
		in the conditions of outer space. The numerical simulator is ESATAN-			
		TMS software package, based on the lumped parameter method. The			

		models of the thermal state of the nanosatellite using ESATAN / ESARAD packages should be developed. In order to confirm the results, to investigate and identify possible problems, awakens the research of the main elements of the design, such as batteries, electronic equipment and a solar cell frame. The total thermal analysis in the ESATAN-TMS software package is expected to be presented in two stages: radiation analysis and thermal analysis. The model is represented as a network of isothermal nodes connected by thermal bonds (radiant and conductive). Buds calculated external heat fluxes in orbit of the Earth, design and internal sources of heat on electronic boards were used as the source data for the thermal model of the NC. As a result of calculations, the nonstationary satellite model and the first idea of the maximum and minimum values of the NC temperatures in the Earth's orbit are given.		
4.	On Board Computer: Modes of satellite operation	1. Pre-starting or starting (Launch mode).	PhD Rassamakin Boris	
5.	The design, development and laboratory tests of the 2-axis sensor Sun	size and weight. Typically, two-axis digital Sun sensors employ an array	PhD Rassamakin Boris	

		was then developed in order to account for the geometrical deviations		[]
		and deformations of the pinhole-projected light-spot, as well as to		
		account for the background noise and disturbances to the electronics.		
		The laboratory setup is presented along with the test campaigns: the		
		results obtained are compared with the simulations, allowing for the		
		validation of the theoretical model.		
6	Dereste market of the		DLD Devery 1-'r	
6.	Development of the	The program and methodology determine the scope and procedure for	PhD Rassamakin	
	program and	testing the engineering model of the student nanosatellite PolyITAN-1 in	Boris	
	conducting of	the context of complex impacts of space factors. The conditions of outer		
	thermo-vacuum tests	space are provided by the thermocouple chamber TCE-0.12 with cooled		
	of the nanosatellite	liquid nitrogen shields.		
	model at the	, e e ,		
	experimental stand	University nanotechnology student PolyITAN-1. Nanosatellite is a small		
		spacecraft (artificial Earth satellite), having a weight of about 1 kg and		
		dimensions of 100x100x113 mm. Nanosatellite consists of subsystems:		
		data processing, orientation and stabilization, navigation, telemetry,		
		power supply, transceiver subsystem, interconnection cable network and		
		construction (trusses and installation plates).		
		The design of the NS provides a mechanical connection of the on-board		
		equipment and all the elements of the satellite into a single whole, the		
		installation of the cable network, zachekovku, their fixation at the time		
		of transportation, putting into orbit and bringing into working order in		
		orbit.		
		The purpose of the tests is to test the performance of the main systems of		
		the model of the university student's PolyITAN-1 Polytechnic at		
		simulating the conditions of its functioning in the Earth's orbit.		
		The main task is to test the performance of the basic devices and		
		systems of the model of the university student's PolyITAN-1 under the		
		influence of "cold black" space, solar radiation and sunlight reflected by		
		the Earth (ie thermovacuum factors). Also, the comparison of thermal		
		conditions with the design parameters of the main working systems of the National Assembly when it is underlad from the carrier realist		
		the National Assembly when it is undocked from the carrier rocket, as		
		well as in the regime of normal flight in orbit, (ie, when the satellite		
		stabilized). Validation of workability is subject to: the central processor;		
		payload; radio communication systems; power supply systems.		
		The results of thermovacuum tests of the engineering model of the		
		National Assembly are reflected in the Test Report.		
		The protocol should describe the experimental setup, the locations of the		
		thermocouple installation, the results of the testing of the engineering		
		model of the National Assembly, their analysis and recommendations		

		for the design of the experimental flight model of the National Assembly		
7.	Designing a solar cell on a pane panel for a nanosatellite of the CubeSat format	 with an effective passive thermal control system. The documentation for the solar cell frame should be developed. Tasks for designing the project-develop documentation for the solar cell frame (SB) and to make the SB. Development of a technical task for the manufacture of WB with thermoregulating cellular frames. Carried out the simulation of the thermal modes of the elements of the systems of the nanosatellite (NS) systems in the conditions of orbital flight around the Earth. 3D model of frame and solar battery to PolyItan nanosatellite has been developed. It is planned to carry out the following tests of the frame and electrical supply system: tests of batteries and solar panels and tests of the measuring part of the electrical supply system. The thermal state of the power supply system and the SB is in the process of numerical simulation in the ESATAN-TMS software 	PhD Rassamakin Boris	
		package, based on the lumped parameter method. To calculate the SB, a special module will be written. The results of the calculation of external heat fluxes, heat exchange in the SB and the temperature field are calculated in the ESATAN-TMS package. Before creating a detailed model, it is believed that the main elements of the solar cell frame are being studied. The general thermal analysis in the ESATAN-TMS software package is expected to be presented as a network of isothermal nodes connected by thermal bonds (radiant and conductive). An analysis of the results of simulation and testing of the electrical supply system with the SB will show that it is ready for use in the conditions of outer space.		
8.	Strength of nanosatellite POLYITAN-2 in action of random loads at stage of transfer to orbit	Within the framework of existing standards for the creation of new spacecraft, the design and development of both large and ultra-small satellites requires the solution of a wide range of problems associated with analyzing the strength of satellites at different stages of their life cycle. The main and most difficult, from the point of view of ultimate loads, is the stage of putting into orbit. At this stage, the satellite is subject to extreme accelerations, harmonic and random vibrations, shock loads. In this paper we present the strength analysis of the nanosatellite POLYITAN-2 under the action of random vibrations at the stage of launching into orbit. An effective solid-state model and a corresponding finite element model of a nanosatellite have been developed. With the use of the software complex Ansys, a computational study of the stress-strain state of the nanosatellite was carried out. The strength of the structural elements is evaluated. It is established that for the considered	PhD Rassamakin Boris	

		version of POLYITAN-2 the strength conditions are fulfilled.		
9.	Two-stage distiller	The purpose of the work is to develop a scheme and a laboratory model of a two-stage distiller, which can operate in the mode of double distillation for medicine, experimental testing of its characteristics.	-	
10.	Vacuum distillation unit with jet heat transformer	e i	-	

General Prerequisite knowledge required

Students after the 2nd-3rd year of study; Basics of technical thermodynamics; Basics of heat and mass transfer; Basics of mechanics of liquids and gases; Basics of technical measurements.

Igor Sikorsky KPI	VISHWANIKETAN
Dean of Faculty of Heat Power Engineering	
Dr. Sci., Prof. Pysmennyi Evgenii	
aes_kpi@ukr.net	
	Signature

Signature _____

UG Fellowship Educational-Training Program for Indian students, Summer-2018. FACULTY OF HEAT POWER ENGINEERING List of Projects

N⁰	Name of project	Description of project	Name of Professor/mentor	Name of Applicants	Remarks
1.	Heat transfer intensity in heating and condensation zones of miniature heat pipes	Developing and investigating of miniature cooling systems is an actual task due to miniaturization of electronic equipment. Miniature heat pipes (MHP) can be used as main components of such systems. MHPs are heat pipes with number Bo<2. Effectiveness of MHP working is defined by heat transfer intensity in evaporation and condensation zones. That's why this topic requires a detailed investigation.	Dr.Sci., Senior Researcher Kravets Volodymyr		
2.	Influence of geometrical factors on heat transfer characteristics of miniature heat pipes	Developing and investigating of miniature cooling systems is an actual task due to miniaturization of electronic equipment. Miniature heat pipes (MHP) can be used as main components of such systems. MHPs are heat pipes with number Bo<2. Geometrical parameters make great influence on heat transfer processes inside MHP, which, in its turn, defines effectiveness of working of this device. That's why investigation of influence of these factors on MHP characteristics is actual.	Dr.Sci., Senior Researcher Kravets Volodymyr		
3.	Gravity influence on maximum heat transfer ability of miniature heat pipes	Developing and investigating of miniature cooling systems is an actual task due to miniaturization of electronic equipment. Miniature heat pipes (MHP) can be used as main components of such systems. MHPs are heat pipes with number Bo<2. In spite the fact, that presence of wick makes possible working of MHP at any orientation in space, orientation influences on MHP heat transfer characteristics and this topic requires an investigation.	Dr.Sci., Senior Researcher Kravets Volodymyr		
4.	Gravity influence on maximum heat transfer ability of thermosyphons	A thermosyphon is a two-phase heat transfer device made in a form of hermetical evacuated tube partially filled with heat carrier. When heat is inputted to a thermosyphon heat carrier begins to evaporate and boil. Generated vapor flows to a condensation zone under acting of pressure difference. In this zone it condensates and liquid flow down to an evaporation zone under acting of gravity force (at vertical orientation with bottom heating). Further cycle repeats. Thus, gravitational force makes a great influence on heat transfer characteristics of thermosyphons and this influence need to be investigated.	Dr.Sci., Senior Researcher Kravets Volodymyr		

5.	Influence of heating and condensation zones lengths on heat transfer characteristics of pulsating heat pipes.	Their advantage is absence of wick which simplifies their manufacturing process and reduces their cost. But characteristics of PHPs not worse that these of conventional heat pipes, and they have an ability of working at any orientation in space. Lengths of an evaporation and condensation zones make a great influence on PHP heat transfer characteristics. But data about influence of ratio between lengths of these zones on the characteristics is almost absent in literature. That's why this topic requires an investigation.	
6.	Heat transfer characteristics of pulsating heat pipes with inner diameter of 3 mm	Pulsating heat pipes (PHP) are one of the newest types of heat pipes. Their advantage is absence of wick which simplifies their manufacturing process and reduces their cost. But characteristics of PHPs not worse that these of conventional heat pipes, and they have an ability of working at any orientation in space. Capillary forces should act on heat carrier to allow PHP functioning in pulsating mode. Value of these forces depends not only from heat carrier properties but also from PHP inner diameter. That's why most of researchers investigate PHP with inner diameter 2 mm and less. But according to literature data, increasing of the inner diameter leads to increasing of heat transfer characteristics of PHP, that's why studying of PHP with big inner diameter (more than 2 mm) is expediently.	Ph.D. Alekseik Yevhenii
7.	Investigation of heat transfer intensity at boiling in aluminum grooved heat pipes	Aluminum grooved heat pipes (AGHP) are perspective heat transfer devices for using in many branches of technique and industry due to simplicity of manufacturing and high heat transfer characteristics. Investigation of influence of length and position of an evaporation zone on intensity and peculiarities of heat transfer process at boiling in AGHP will be provided in this work. Position of an evaporation zone will be next: bottom, top, bottom and top at the same time.	Dr.Sci. Khairnasov Sergii
8.	Investigation of heat transfer intensity at condensation in aluminum grooved heat pipes	Aluminum grooved heat pipes (AGHP) are perspective heat transfer devices for using in many branches of technique and industry due to simplicity of manufacturing and high heat transfer characteristics. Investigation of influence of length and position of a condensation zone on intensity and peculiarities of heat transfer process at boiling in AGHP will be provided in this work. Position of a condensation zone will be next: bottom, top, bottom and top at the same time.	Dr.Sci. Khairnasov Sergii
9.	Investigation of boundary density of heat flux at boiling in aluminum	Aluminum grooved heat pipes (AGHP) are perspective heat transfer devices for using in many branches of technique and industry due to simplicity of manufacturing and high heat transfer characteristics. The main task of the work is obtaining of patterns of influence of	Dr.Sci. Khairnasov Sergii

	grooved heat pipes	AGHP geometrical parameters and heat carrier filling ratio on value of boundary density of heat flux.		
10.	Experimental study of heat transfer and aerodynamic of drop-shaped tube	The work is aimed at studying the dependence of the intensity of the convective heat transfer of drop-shaped tubes and their aerodynamic resistance to the flow velocity in the case of a transverse flow of air. Heat transfer is studied on the basis of experimental measurements of the temperature field of the tube. The determination of the aerodynamic resistance is due to the measurement of the difference in static pressure before and after the drop-shaped tube. Experiments are carried out on an aerodynamic stand, which is an open type aerodynamic tube.	M.Sci. Semenyako Olexandr	
11.	Experimental study of heat transfer for plain-oval finned tubes in natural draft conditions	convective heat transfer of finned plain-oval tubes in natural draft conditions depending on the heat dissipation capacity. Heat transfer is	Ph.D., Senior Researcher Terekh Olexandr	
12.	Experimental study of heat transfer and aerodynamic drag for staggered bundle of smooth tubes in transversal air flow	convective heat transfer of staggered bundle of smooth tubes and their aerodynamic resistance to the flow velocity in the case of a transverse flow of air. Heat transfer is studied on the basis of experimental	M.Sci. Semenyako Olexandr	
13.	Experimental study of local heat transfer coefficients on fins top side of flat-oval tubes	top side of flat-oval tubes to the flow velocity in the case of a transverse flow of air. Heat transfer is studied on the basis of direct	M.Sci. Semenyako Olexandr	
14.	Experimental study of hydrodynamic characteristics of flow in the channel by thermal anemometry	• •	M.Sci. Semenyako Olexandr	

	methods			
15.	Experimental study of heat transfer and aerodynamic drag for staggered bundle of screw groves tubes in transversal air flow	convective heat transfer of staggered bundle of screw groves tubes and their aerodynamic resistance to the flow velocity in the case of a transverse flow of air. Heat transfer is studied on the basis of experimental measurements of the temperature field of the tubes. The	M.Sci. Reva Sergiy	
16.	Evaluation of the individual service life-time of turbine equipment	The casings and rotors of steam turbines are the most expensive high- temperature elements of thermal and nuclear power plants. After the exhaustion of the project service time of this equipment, it is customary to replace it with a new one. However, it is possible to extend the term of exploitation after performing work to determine the current state of the equipment. The estimation of the individual resource allows to predict the state of the base metal, based on modern methods of mathematical modeling, which include the determination of the thermal and stress-strain state of the metal, its long-term strength and resistance to low-cycle fatigue.	Dr.Sci., Professor Chernousenko Olga	
17.	Evaluation of the individual service life-time of steam pipelines, locking and control valves	installation of thermal and nuclear power plants. The applied methods	Dr.Sci., Professor Chernousenko Olga	
18.		The issues of taking account of damage caused by exposure to high levels of local temperatures of gases, local non-uniformity of temperature and reliable assessment of residual resource of hightemperature elements are relevant and will provide for a reliable and long-term operation of energy generating equipment. A mathematical model is developed for the combustion process in burner devices with stabilizers based on the software complex ANSYS Fluent. It was created a technique for determining the impact of levels of temperatures and their gradients on the assessment of residual resource of high-temperature elements of power and industrial equipment. Based on data on the work of industrial power equipment and results of		

19.	Operation time	physical experiments, we selected correct initial and boundary conditions that enabled adequate simulation of the influence of non- uniformity in the combustion products temperature field. Based on the software complex Solid Works, we performed calculation studies that take into account the gas-dynamics of gas flow that flows around the pipeline. The thermal and stress-strained states are defined and an estimation is conducted of operational lifecycle of pipeline in a boiler plant depending on the operating conditions of equipment. Provision of reliable and long-term operation of steam turbine	Dr.Sci., Professor	
19.	extension for TPP and NPP power equipment	equipment of the thermal power plant requires determining individual service life of its high-temperature elements. Estimated service time is, to great extent, limited to various technological, constructive or mode factors that were not foreseen or sufficiently studied at the design stage. Accelerated finishing of residual service life of operating equipment under current economic condition is not permissible because the current operation time of the majority of turbine equipment already exceed the fleet one. Identification of dominating factors and mechanisms of aging, reduction or limitation of their impact on the rate of exhausting of assigned service life of high-temperature elements of steam turbines is a relevant problem both in scientific and practical terms.	Chernousenko Olga	
20.	Biomass-firing mini CHPP	Designing a mini cogeneration heat power plant operating on biofuel. The main fuel is the recycled waste of the wood and cardboard industry. It is planned to develop training laboratories on the basis of CHPP for students of the Igor Sikorsky Kyiv Polytechnic Institute.	Dr.Sci., Professor Chernousenko Olga	
21.	A mobile power complex that operates on different types of fuel	of fuels, including renewable: wood, leaves, waste wood and	Dr.Sci., Professor Chernousenko Olga, Ph.D., Associate Professor Butovsky Leonid	

		and the cost of electricity transmission in networks.		
22.	Technology of micro	The main approaches in developing the technology of micro flare gas	Ph.D., Associate	
	flare gas combustion	combustion are: the scheme of organizing the mixture of fuel and	Professor	
	in stabilization type	oxidant provides the optimal ratio of combustion components; micro	Butovsky Leonid	
	burners with	flares highly efficient combustion of fuels is realized in the system of		
	advanced	stabilizers of a relatively small size; reliable stabilization of the		
	capabilities of	combustion process is ensured by the presence of zones of		
	control of the	recirculation of stabilizers. An important feature of the developed		
	temperature level	technology is the modularity of the design. It is possible to develop		
	and temperature	burners of different capacities due to the change in the number of		
	profile of	stabilizers, each of which can be considered as a separate burner. There		
	combustion products	is a possibility to influence on the combustion process and the length		
	for firing devices for	of the torch by the individual stabilizers and thus form the length of the		
	energy and industrial	flame, the distribution of heat fluxes and the necessary profile of the		
	usage	temperature of gases in the furnace space.		
23.	Optimization of the		Dr.Sci., Professor	
	mode of operation of	of heating and hot water supply systems at home using solar collectors	Varlamov	
	the heating and hot	and solar panels for electricity generation.	Gennadii	
	water supply system	A building is located in a high-hiker area of the country with		
	of the building using	fluctuations in the temperature of the air from -8 $^{\circ}$ C in winter to + 20 $^{\circ}$		
	solar collectors and	1 1 0		
	photovoltaics	comfortable living conditions and living in a building with a heating		
		and hot water supply system.		
		The student-bachelor, based on the initial data, calculates the main		
		values of the heating of the building, determines the required number		
		of solar collectors and photovoltaic solar panels, creates the		
		corresponding technological scheme of communication of these		
		systems and optimizes the operating modes of these systems.		
24.	Development of heat	1 0	Dr.Sci., Professor	
	supply system		Varlamov	
	(heating and hot	hydrogen produced by the solar power supply system based on	Gennadii	
	water supply) at	photovoltaic.		
	home using	A dwelling house is located in a high-hiker area of the country with		
	hydrogen contact	1		
	heat generator	C in the summer. Such climatic conditions are required for providing		
		comfortable living conditions and living in a house with a heating and		
		hot water supply system.		
		Based on the initial data, a student-bachelor carries out the calculation		
		of the main values of the heat supply system of the building,		
		determines the number of photovoltaic solar panels, selects the		

		necessary equipment of the system of power consumption, determines the main characteristics of the contact heat generator operating on hydrogen fuel, creates a technological scheme of production and		
		hydrogen fuel, creates a technological scheme of production and consumption of hydrogen, optimizes operating modes all components of the system.		
25.	The heat pump		Dr.Sci., Professor	
	system for	period of the year involves maintaining the room in the given	Bezrodny	
	maintenance of the	temperature conditions. In production premises with heat and moisture	Mikhailo	
	set parameters of air in the production			
	room with heat and			
	moisture extraction	1 /		
	in the conditions of			
	hot climate	only for cooling, but also drainage of the inflow air. To solve such		
		problems a specially developed heat pump scheme with cooling and		
		drainage of the inflow air can be used. The course project will propose		
		the appropriate heat pump scheme for calculating the parameters of		
		such a heat pump scheme, numerical calculations and their analysis to		
		determine the conditions for efficient use of heat pump system to		
26		provide a given heat-air mode of air in the production premises.		
26.	Using of CAD-		Ph.D., Associate Professor Kutra	
	systems for design and numerical	11	Dmitro	
	simulation of	(high efficiency, simplicity of construction, cheap materials and	Dilluo	
	processes in heat-	I HAIHHACHTHING COMDACTIESS AND TOW WEIGHT OF THE DEVICE ETC. I SHOHID		
	processes in heat- mass exchange	manufacturing, compactness and low weight of the device, etc.) should be taken into account at the stage of their design.		
	mass exchange	be taken into account at the stage of their design.		
	1			
	mass exchange	be taken into account at the stage of their design. Expansion of the field of application of computer-aided design systems		
	mass exchange	be taken into account at the stage of their design. Expansion of the field of application of computer-aided design systems (CAD-systems) allows to simplify the process of designing heat exchangers, improves accuracy, reduces the design time, allows to automate the drawing of constructed product and its parts, to make a		
	mass exchange	be taken into account at the stage of their design. Expansion of the field of application of computer-aided design systems (CAD-systems) allows to simplify the process of designing heat exchangers, improves accuracy, reduces the design time, allows to automate the drawing of constructed product and its parts, to make a quick engineering analysis of the created design (analysis of strength,		
	mass exchange	be taken into account at the stage of their design. Expansion of the field of application of computer-aided design systems (CAD-systems) allows to simplify the process of designing heat exchangers, improves accuracy, reduces the design time, allows to automate the drawing of constructed product and its parts, to make a quick engineering analysis of the created design (analysis of strength, heat-, air-, hydrodynamic calculations).		
	mass exchange	be taken into account at the stage of their design. Expansion of the field of application of computer-aided design systems (CAD-systems) allows to simplify the process of designing heat exchangers, improves accuracy, reduces the design time, allows to automate the drawing of constructed product and its parts, to make a quick engineering analysis of the created design (analysis of strength, heat-, air-, hydrodynamic calculations). In the coursework, it is proposed to make design calculation of the		
	mass exchange	be taken into account at the stage of their design. Expansion of the field of application of computer-aided design systems (CAD-systems) allows to simplify the process of designing heat exchangers, improves accuracy, reduces the design time, allows to automate the drawing of constructed product and its parts, to make a quick engineering analysis of the created design (analysis of strength, heat-, air-, hydrodynamic calculations). In the coursework, it is proposed to make design calculation of the shell and tube heat exchanger "air-water", which is the cooler of the		
	mass exchange	be taken into account at the stage of their design. Expansion of the field of application of computer-aided design systems (CAD-systems) allows to simplify the process of designing heat exchangers, improves accuracy, reduces the design time, allows to automate the drawing of constructed product and its parts, to make a quick engineering analysis of the created design (analysis of strength, heat-, air-, hydrodynamic calculations). In the coursework, it is proposed to make design calculation of the shell and tube heat exchanger "air-water", which is the cooler of the compressor equipment.		
	mass exchange	be taken into account at the stage of their design. Expansion of the field of application of computer-aided design systems (CAD-systems) allows to simplify the process of designing heat exchangers, improves accuracy, reduces the design time, allows to automate the drawing of constructed product and its parts, to make a quick engineering analysis of the created design (analysis of strength, heat-, air-, hydrodynamic calculations). In the coursework, it is proposed to make design calculation of the shell and tube heat exchanger "air-water", which is the cooler of the compressor equipment. As a result of the design, it is necessary to determine the thermal,		
	mass exchange	be taken into account at the stage of their design. Expansion of the field of application of computer-aided design systems (CAD-systems) allows to simplify the process of designing heat exchangers, improves accuracy, reduces the design time, allows to automate the drawing of constructed product and its parts, to make a quick engineering analysis of the created design (analysis of strength, heat-, air-, hydrodynamic calculations). In the coursework, it is proposed to make design calculation of the shell and tube heat exchanger "air-water", which is the cooler of the compressor equipment. As a result of the design, it is necessary to determine the thermal, hydrodynamic and structural characteristics of the apparatus, and to		
	mass exchange	be taken into account at the stage of their design. Expansion of the field of application of computer-aided design systems (CAD-systems) allows to simplify the process of designing heat exchangers, improves accuracy, reduces the design time, allows to automate the drawing of constructed product and its parts, to make a quick engineering analysis of the created design (analysis of strength, heat-, air-, hydrodynamic calculations). In the coursework, it is proposed to make design calculation of the shell and tube heat exchanger "air-water", which is the cooler of the compressor equipment. As a result of the design, it is necessary to determine the thermal,		

27.	Increasing the	software package that allows you to create and comprehensively analyze equipment and its components (including heat power energy equipment), study and development of which is an integral part of the process of preparing a modern engineer and designer. An important step towards sustainable development is the formation of	Assistant of		
27.	efficiency of the	modern ecological and economic thinking and arming with the latest	Professor		
	enterprise through	world-wide approaches and principles for making the necessary	Romanova		
	the use of resource-	decisions for the effective development of enterprises and increasing	Katerina		
	efficient and clean	1			
	production	The resource efficient and cleaner production method developed			
		jointly by UNIDO and UNEP aims at preventing the negative impact			
		on the environment, increasing the efficiency of industrial production			
		and reducing risks to humans and the environment.			
		The course project includes an assessment of six key aspects of production: the choice and effective use of materials, efficient energy			
		consumption, sources of supply and efficient water use, reduction of			
		waste generation and their safe disposal, monitoring of emissions into			
		the atmosphere, reduction and treatment of wastewater.			
		The purpose of the course work is to conduct an analysis of the			
		effectiveness of the company to further identify possible losses of			
		energy resources, natural materials and save money resources.			
		Resource efficient and cleaner production is an effective tool for			
		sustainable consumption and production and a way to reduce the			
		negative impact on the environment of industrial enterprises and			
a c	D:	contributes to the transition to the green economy model in the world.			
28.	Binary refrigeration		Ph.D., Associate		
	unit with jet	refrigeration cycle in which the compressor is used as a water jet compressor, while the refrigeration agent is freon that is not soluble in	Professor Solomakha		
	compressor	water; experimentally test the efficiency of the developed scheme on a	Andriy		
		laboratory model.			
29.	Experimental setup	The main goal of the work is to develop a scheme of an experimental	Ph.D., Associate	+	
	for heat transfer		Professor		
	research using the		Barabash Petro		
	method of a thick				
	wall				

Students after the 2nd-3rd year of study; Basics of technical thermodynamics; Basics of heat and mass transfer; Basics of mechanics of liquids and gases; Basics of technical measurements.

Igor Sikorsky KPI Dean of Faculty of Heat Power Engineering Dr. Sci., Prof. Pysmenniy Evgeniy aes_kpi@ukr.net

Signature _____

Signature _____

VISHWANIKETAN

UG Fellowship Educational-Training Program for Indian students, Summer-2018. FACULTY OF ELECTRICAL POWER ENGINEERING AND AUTOMATICS List of Projects

N⁰	Name of project	Description of project	Name of Professor/	Name of	Remarks
1.	Part 1. Calculation and modeling of solar power plant in parallel operation on a distribution grid	 Calculation of a solar power plant connected to a distribution electrical grid. Simulation of a solar power plant in a distribution electrical grid in the Power Factory program. Investigation of the solar power plant influence on the operating modes of the distribution electrical grid. Analyze the results. 	Anna Trunina	Applicants	Duration is 1 week
2.	Part 2. Practical methods of short circuits calculation, modeling and relay protection tuning	 Analytical calculation of short circuit currents (1,2,3-phase) (2 days) Modelling of short circuits using PowerFactory software (1 day) ABB relay protection calculation, tuning, and modeling (2 days) 	Artem Nesterko		Duration is 1 week
3.	Part 3. Diagnostics of PV modules at field conditions	 Mathematical and computer models of photovoltaic modules operation at various external conditions (irradiance, temperature, partial shading) Electrical losses in PV modules and its influence on power of PV plants Measurements and monitoring of electrical parameters and 	Aleksandr Gaevsky		Duration is 1 week Necessary knowledge of students: differential and integral calculus, DC electric circuits, semiconductor physics concepts, selected optimization methods, programming in MATLAB

		determination of the efficiency and current state of PV modules		
4.	Part 4. Logical circuits synthesis, Field Programmable Gate Array (FPGA) and logic relay programming	 Assembly of logical schemes based on integrated circuits and breadboards. Work with logical functions in software for programming FPGA Quartus 2. FPGA programming. Basics of Relay Logic LD Language for PLC Programming. Implementing a control scheme based on the Lovato PLC. 	Serhii Buryan	Duration is 1 week
5.	Part 5. Programmable Logic Controllers. Overview, programming and testing.	 Structured logic design. Introduction to PLC programming by software "Easy-soft". Developing, debugging and experimental testing of developed automation system. 	Serhii Buryan	Duration is 1 week
6.	Part 6. Variable speed drives for industrial applications	 Calculation and simulation of cascade speed and torque control systems of DC electrical drives. Calculation and simulation of frequency control systems of AC electrical drives with induction motors. ABB DC and AC industrial drives (manual and autotuning, modeling, installation, features) 	Mykola Pushkar	Duration is 1 week Necessary knowledge of students: - Simulation in Matlab - Fundamentals of induction motors - Fundamentals of DC motors - Fundamentals of control theory

General remarks

Some explanations for traineeship at the FEA:

1. The FEA plans to implement 6 Projects (parts) as a comprehensive work for all students who will come an internship.

2. Despite the fact that classes will be held for the whole group, each student receives his task and his initial data for the course work in the framework of the topic specified in the table.

3. Complex work consists of six parts (from Part 1 to Part 6)

4. The first two parts will be implemented by the Department of Automation of Power Systems;

the second part - the Department of Renewable Electric Power;

the last three - the Department of electric drive. so students can familiarize themselves with 3 departments and their capabilities.

Signature _____

Signature _____